Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069006

RESUMO

Given their potent antioxidant and biological properties [...].


Assuntos
Antioxidantes , Polifenóis , Humanos , Polifenóis/farmacologia , Antioxidantes/farmacologia
2.
J Colloid Interface Sci ; 652(Pt B): 1308-1324, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659303

RESUMO

HYPOTHESIS: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e. caffeic acid (CA), chlorogenic acid (CGA) and gallic acid (GA) under mild aerial oxidative conditions were prepared. EXPERIMENTS: The hydrogels were subjected to chemical assays, ATR FT-IR and EPR spectroscopy, rheological and morphological SEM analysis. Mechanical tests were carried out on hydrogels prepared by inclusion of agarose. Biological tests included evaluation of the antibacterial and wound healing activity, and hemocompatibility. FINDINGS: The decrease of free NH2 and SH groups of SPI, the EPR features, the good cohesive strength and excellent underwater resistance (15 days for SPI/GA) under conditions relevant to their use as surgical glues indicated an efficient interaction of the polyphenols with the protein in the hydrogels. The polyphenols greatly also improved the mechanical properties of the SPI/ agarose/polyphenols hydrogels. These latter proved biocompatible, hemocompatible, not harmful to skin, displayed durable adhesiveness and good water-vapour permeability. Excellent antibacterial properties and in some cases (SPI/CGA) a favourable wound healing activity on dermal fibroblasts was obtained.

3.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687069

RESUMO

1,4-Benzothiazines are the main building blocks of the naturally occurring pheomelanin pigments, and their chromophoric properties have been strongly related to the well-known phototoxicity of these pigments, partly responsible for the high incidence of melanoma and other skin cancers in red-haired people. However, some peculiar features of the 1,4-benzothiazine chromophore could be functionally exploited in several sectors. Within this context, in this perspective, an overview of the very recently reported applications of the 1,4-benzothiazine chromophore in pH sensing, filter permeability control, smart packaging, electrochromic device fabrication, bioimaging, photocatalysis, and HPLC detection systems is provided, together with a brief presentation of recently developed synthetic approaches to the 1,4-benzothiazine scaffold, with the aim of emphasizing the still-undervalued multifunctional opportunities offered by this class of compounds.


Assuntos
Dermatite Fototóxica , Melanoma , Humanos , Cromatografia Líquida de Alta Pressão , Permeabilidade
4.
ACS Appl Mater Interfaces ; 15(24): 29618-29635, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289140

RESUMO

A promising approach for advanced bone implants is the deposition on titanium surfaces of organic thin films with improved therapeutic performances. Herein, we reported the efficient dip-coating deposition of caffeic acid (CA)-based films on both polished and chemically pre-treated Ti6Al4V alloys by exploiting hexamethylenediamine (HMDA) crosslinking ability. The formation of benzacridine systems, resulting from the interaction of CA with the amino groups of HMDA, as reported in previous studies, was suggested by the yellow/green color of the coatings. The coated surfaces were characterized by means of the Folin-Ciocalteu method, fluorescence microscopy, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, and Fourier transform infrared spectroscopy, confirming the presence of a uniform coating on the titanium surfaces. The optimal mechanical adhesion of the coating, especially on the chemically pre-treated substrate, was also demonstrated by the tape adhesion test. Interestingly, both films exhibited marked antioxidant properties (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays) that persisted over time and were not lost even after prolonged storage of the material. The feature of the coatings in terms of the exposed groups (XPS and zeta potential titration evidence) was apparently dependent on the surface pre-treatment of the titanium substrate. Cytocompatibility, scavenger antioxidant activity, and antibacterial properties of the developed coatings were evaluated. The most promising results were obtained in the case of the chemically pre-treated CA/HMDA-based coated surface that showed good cytocompatibility and high reactive oxygen species' scavenging ability, preventing their intracellular accumulation under pro-inflammatory conditions; moreover, an anti-fouling effect preventing the formation of 3D biofilm-like bacterial aggregates was observed by scanning electron microscopy. These results open new perspectives for the development of innovative titanium surfaces with thin coatings from naturally occurring phenols for bone contact implants.


Assuntos
Materiais Revestidos Biocompatíveis , Titânio , Ligas/farmacologia , Antioxidantes/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Humanos
5.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903701

RESUMO

A straightforward, low-cost, and scalable solid-state mechanochemical protocol for the synthesis of silver nanoparticles (AgNP) based on the use of the highly reducing agri-food by-product pecan nutshell (PNS) is reported herein. Under optimized conditions (180 min, 800 rpm, PNS/AgNO3 ratio = 55/45 w/w), a complete reduction in silver ions was achieved, leading to a material containing ca. 36% w/w Ag0 (X-ray diffraction analysis). Dynamic light scattering and microscopic analysis showed a uniform size distribution (15-35 nm average diameter) of the spherical AgNP. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay revealed lower-although still absolutely high (EC50 = 5.8 ± 0.5 mg/mL)-antioxidant properties for PNS for the further incorporation of AgNP, supporting the efficient reduction of Ag+ ions by PNS phenolic compounds. Photocatalytic experiments indicated that AgNP-PNS (0.4 mg/mL) was able to induce the >90% degradation of methylene blue after 120 min visible light irradiation, with good recycling stability. Finally, AgNP-PNS demonstrated high biocompatibility and significantly light-enhanced growth inhibition properties against Pseudomonas aeruginosa and Streptococcus mutans at concentrations as low as 250 µg/mL, also eliciting an antibiofilm effect at 1000 µg/mL. Overall, the adopted approach allowed to reuse a cheap and abundant agri-food by-product and required no toxic or noxious chemicals, making AgNP-PNS a sustainable and easy-to-access multifunctional material.

6.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835650

RESUMO

The search for new synthetic melanin-related pigments that maintain the antioxidant and photoprotective properties of naturally occurring dark eumelanins, while overcoming their unfavorable solubility, and molecular heterogeneity is presently a very active issue for dermo-cosmetic purposes. In this work, we explored the potential of a melanin obtained from the carboxybutanamide of a major eumelanin biosynthetic precursor, 5,6-dihydroxyindole-2-carboxylic acid (DHICA), by aerobic oxidation under slightly alkaline conditions. Analysis of the pigment by EPR, ATR-FTIR and MALDI MS indicated a substantial structural similarity to DHICA melanin, while investigation of the early intermediates confirmed unchanged regiochemistry of the oxidative coupling. The pigment exhibited a UVA-visible absorption even more intense than that of DHICA melanin, and a noticeable solubility in polar solvents of dermo-cosmetic relevance. The hydrogen- and/or electron-donor ability, and the iron (III) reducing power as determined by conventional assays provided evidence for marked antioxidant properties not merely ascribable to the more favorable solubility profile, while the inhibitory action of the radical- or photosensitized solar light-induced lipid peroxidation was more marked compared to that of DHICA melanin. Overall, these results hint at this melanin, which remarkable properties are, in part, due to the electronic effects of the carboxyamide functionality as a promising functional ingredient for dermo-cosmetic formulations.


Assuntos
Antioxidantes , Melaninas , Melaninas/química , Antioxidantes/química , Solubilidade
7.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36829982

RESUMO

The production of fruit distillates generates solid residues which are potentially rich in bioactive compounds worthy of valorization and exploitation. We report herein the in vitro antioxidant and antiproliferative properties of an extract obtained from the waste of fermented strawberry distillate production. The main low molecular weight phenolic components of the extract were identified as ellagic acid and p-coumaric acid using spectroscopic and chromatographic analysis. The extract exhibited high antioxidant properties, particularly in the ferric reducing/antioxidant power (FRAP) assay, and a high total phenolic content (TPC). It was also able to induce an antiproliferative effect on different human cancer cell lines. A strong decrease in viability in human promyelocytic leukemia (HL-60) cells through a rapid and massive apoptosis were observed. Moreover, at an early time (<30 min), reactive oxygen species (ROS) production and inactivation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK) pathway were detected. Notably, the antiproliferative activity of the sample was comparable to that observed with an analogous extract prepared from unfermented, fresh strawberries. These results bring new opportunities for the valorization of fruit distillery by-products as low-cost resources for the design of bioactive formulations of comparable value to that from fresh food.

8.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290583

RESUMO

Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19-27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.

9.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36139755

RESUMO

Ellagic acid (EA) has long been recognized as a very active antioxidant, anti-inflammatory, and antimicrobial agent. However, its low bioavailability has often hampered its applications in health-related fields. Here, we report a phospholipid vesicle-based controlled release system for EA, involving the exploitation of chestnut wood mud (CWM), an industrial by-product from chestnut tannin production, as a largely available and low-cost source of this compound. Two kinds of CWM with different particle size distributions, indicated as CWM-A and CWM-B (<100 and 32 µm, respectively), containing 5 ± 1% w/w EA, were incorporated into transfersomes. The latter were small in size (~100 nm), homogeneously dispersed, and negatively charged. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated up to three-fold improvement in the antioxidant properties of CWM upon incorporation into transfersomes. The kinetics of EA released under simulated physiological conditions were evaluated by UV-Vis spectroscopy and HPLC analysis. The best results were obtained with CWM-B (100% of EA gradually released after 37 days at pH 7.4). A stepwise increase in the antioxidant properties of the released material was also observed. Cell-based experiments confirmed the efficacy of CWM-B transfersomes as antioxidant agents in contrasting photodamage.

10.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956765

RESUMO

We report herein an optimized procedure for preparation of carboxamides of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), the main biosynthetic precursor of the skin photoprotective agents melanins, to get access to pigments with more favorable solubility properties with respect to the natural ones. The developed procedure was based on the use of a coupling agent (HATU/DIPEA) and required protection of the catechol function by easily removable acetyl groups. The O-acetylated compounds could be safely stored and taken to the reactive o-diphenol form just before use. Satisfactorily high yields (>85%) were obtained for all amides. The oxidative polymerization of the synthesized amides carried out in air in aqueous buffer at pH 9 afforded melanin-like pigmented materials that showed chromophores resembling those of DHICA-derived pigments, with a good covering of the UVA and the visible region, and additionally exhibited a good solubility in alcoholic solvents, a feature of great interest for the exploitation of these materials as ingredients of dermocosmetic formulations.


Assuntos
Ácidos Carboxílicos , Melaninas , Amidas , Indóis , Melaninas/química
11.
J Colloid Interface Sci ; 624: 400-410, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671617

RESUMO

HYPOTHESIS: The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity. EXPERIMENTS: MeDHICA and HMDA were reacted in aqueous buffer, pH 9.0 in the presence of different substrates to assess the film forming ability. The effect of different reaction parameters (pH, diamine chain length) on film formation was investigated. Voltammetric and AFM /SEM methods were applied for analysis of the film redox activity and morphology. HPLC, MALDI-MS and 1HNMR were used for chemical characterization. The film reducing activity was evaluated in comparison with PDA by chemical assays and using UV stressed human immortalized keratinocytes (HaCat) cells model. FINDINGS: Regular and homogeneous yellowish films were obtained with moderately hydrophobic properties. Film deposition was optimal at pH 9, and specifically induced by HMDA. The film consisted of HMDA and monomeric MeDHICA accompanied by dimers/small oligomers, but no detectable MeDHICA/HMDA covalent conjugation products. Spontaneous assembly of self-organized networks held together mainly by electrostatic interactions of MeDHICA in the anion form and HMDA as the dication is proposed as film deposition mechanism. The film displayed potent reducing properties and exerted significant protective effects from oxidative stress on HaCaT.


Assuntos
Indóis , Polímeros , Humanos , Indóis/química , Indóis/farmacologia , Oxirredução , Polímeros/química , Polímeros/farmacologia , Tecnologia
12.
J Org Chem ; 87(7): 4580-4589, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266705

RESUMO

The addition of thiol compounds to o-quinones, as exemplified by the biologically relevant conjugation of cysteine to dopaquinone, displays an anomalous 1,6-type regiochemistry compared to the usual 1,4-nucleophilic addition, for example, by amines, which has so far eluded intensive investigations. By means of an integrated experimental and computational approach, herein, we provide evidence that the addition of glutathione, cysteine, or benzenethiol to 4-methyl-o-benzoquinone, modeling dopaquinone, proceeds by a free radical chain mechanism triggered by the addition of thiyl radicals to the o-quinone. In support of this conclusion, DFT calculations consistently predicted the correct regiochemistry only for the proposed thiyl radical-quinone addition pathway. These results would prompt a revision of the commonly accepted mechanisms for thiol-o-quinone conjugation and stimulate further work aimed at assessing the impact of the free radical processes in biologically relevant thiol-quinone interactions.


Assuntos
Quinonas , Compostos de Sulfidrila , Cisteína/química , Radicais Livres , Glutationa/química , Quinonas/química , Compostos de Sulfidrila/química
13.
Ecotoxicol Environ Saf ; 234: 113365, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259593

RESUMO

Conocephalum conicum L. is a cosmopolitan liverwort species able to respond to local environmental pollution by changing its biological features. In the present study, we assessed the different biological responses in C. conicum to heavy metal contamination of Regi Lagni channels, a highly polluted freshwater body. As for the in field experiment, we set up moss bags containing collected samples of the local wild growing C. conicum, from the upstream site (non-polluted area), and we exposed them in the three selected sites characterized by different and extreme conditions of heavy metal pollution. In addition, to better understand the contribution of heavy metals to the alterations and response of the liverwort, we performed in vitro tests, using the same concentration of heavy metals measured in the sites at the moment of the exposition. In both experimental settings, bioaccumulation, ultrastructural damage, reactive oxygen species production and localization, antioxidant enzymes activity (superoxide dismutase, catalase and glutathione S-transferases), glutathione (reduced and oxidized) levels, localization of compounds presenting thiol groups and phenolic content were investigated. The results showed that the samples from different sites and conditions (for in vitro tests) showed significant differences. In particular, the ultrastructural alterations show a trend correlated to the different exposure situations; ROS contents, glutathione, antioxidant enzyme activities, and phenolic contents were increased showing an enhancement of the antioxidant defense both by the enzymatic way and by using the synthesis of antioxidant phenolic compounds. This study confirms the ability of C. conicum to respond to heavy metal pollution and the responses studied are, at least partially, correlated to the presence of heavy metals. All the responses considered respond consistently with the pollution trend and they can be proposed as pollution biomarkers. Therefore, we suggest the use of C. conicum to identify local hot spots of pollution in further investigation.

14.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053239

RESUMO

The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.


Assuntos
Antioxidantes , Catecóis , Flavonoides , Fenóis , Selênio/química , Enxofre/química , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Catecóis/química , Catecóis/farmacocinética , Catecóis/farmacologia , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/química , Fenóis/farmacocinética , Fenóis/uso terapêutico
15.
J Agric Food Chem ; 70(3): 751-758, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029982

RESUMO

Condensed tannins (CT) have been the focus of increasing interest in the last years as a result of their potent biological properties, which have prompted their use in the food and feed sector as functional ingredients. The possible exploitation of these compounds as multifunctional additives for the implementation of active food packaging has also been recently appreciated. In this perspective, an overview of the structural features, accessible sources, methods of analysis, and functional properties of CT is provided, with the aim of critically emphasizing the opportunities offered by this widespread class of natural phenolic compounds for the rational design of multifunctional and sustainable food packaging materials.


Assuntos
Proantocianidinas , Antioxidantes/análise , Alimentos , Embalagem de Alimentos
16.
Food Chem ; 373(Pt B): 131474, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731814

RESUMO

Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet.


Assuntos
Melaninas , Pigmentação , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
17.
Mol Nutr Food Res ; 66(1): e2100670, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806294

RESUMO

Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Antioxidantes/farmacologia , Alimento Funcional , Polifenóis/metabolismo , Polifenóis/farmacologia
18.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467593

RESUMO

Among bioactive phytochemicals, ellagic acid (EA) is one of the most controversial because its high antioxidant and cancer-preventing effects are strongly inhibited by low gastrointestinal absorption and rapid excretion. Strategies toward an increase of solubility in water and bioavailability, while preserving its structural integrity and warranting its controlled release at the physiological targets, are therefore largely pursued. In this work, EA lysine salt at 1:4 molar ratio (EALYS), exhibiting a more than 400 times increase of water solubility with respect to literature reports, was incorporated at 10% in low methoxylated (LM) and high methoxylated (HM) pectin films. The release of EA in PBS at pH 7.4 from both film preparations was comparable and reached 15% of the loaded compound over 2 h. Under simulated gastric conditions, release of EA from HM and LM pectin films was minimal at gastric pH, whereas higher concentrations-up to 300 µM, corresponding to ca. 50% of the overall content-were obtained in the case of the HM pectin film after 2 h incubation at the slightly alkaline pH of small intestine environment, with the enzyme and bile salt components enhancing the release. EALYS pectin films showed a good prebiotic activity as evaluated by determination of short chain fatty acids (SCFAs) levels following microbial fermentation, with a low but significant increase of the effects produced by the pectins themselves. Overall, these results highlight pectin films loaded with EALYS salt as a promising formulation to improve administration and controlled release of the compound.


Assuntos
Preparações de Ação Retardada/química , Ácido Elágico/administração & dosagem , Ácido Elágico/química , Pectinas/química , Disponibilidade Biológica , Composição de Medicamentos/métodos , Fezes/microbiologia , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Hidroxilação , Absorção Intestinal/efeitos dos fármacos , Pectinas/classificação , Solubilidade
19.
Food Chem ; 348: 129152, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33515953

RESUMO

A red pigment was prepared by reaction of chlorogenic acid (CGA) with tryptophan (TRP) in air at pH 9 (37% w/w yield) and evaluated as food dye. The main component of pigment was formulated as an unusual benzochromeno[2,3-b]indole linked to a TRP unit, featuring a cyanine type chromophore (λmax 542, 546 nm, 1% extinction coefficient of the sodium salt = 244 ± 2). The chromophore showed a minimal pH dependence and proved stable for at least 3 h at 90 °C, both at pH 3.6 or 7.0, whereas red wine anthocyanins showed a substantial (30%) and betanin a complete abatement after 1 h at the acidic pHs. An intense coloring of different food matrices was obtained with the pigment at 0.01 % w/w. No toxicity was observed up to 0.2 mg/mL on hepatic and colonic cell lines. These data make this dye a promising alternative for red coloring of food.


Assuntos
Antocianinas/química , Ácido Clorogênico/química , Corantes de Alimentos/química , Triptofano/química , Antocianinas/farmacologia , Betacianinas/química , Betacianinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes de Alimentos/farmacologia , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Acoplamento Oxidativo
20.
Biomacromolecules ; 22(2): 399-409, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432805

RESUMO

Sulfated phenolic polymers have extensively been investigated as anticoagulant agents in view of their higher bioavailability and resistance to degradation compared to heparins, allowing for increased half-lives. In this frame, we report herein the preparation of sulfated derivatives of tyrosol, one of the most representative phenolic constituents of extra virgin olive oil, by different approaches. Mild sulfation of OligoTyr, a mixture of tyrosol oligomers, that has been reported to possess antioxidant properties and osteogenic activity, afforded OligoTyrS I in good yields. Elemental analysis, NMR, and MALDI-MS investigation provided evidence for an almost complete sulfation at the OH on the phenylethyl chain, leaving the phenolic OH free. Peroxidase/H2O2 oxidation of tyrosol sulfated at the alcoholic group (TyrS) also provided sulfated tyrosol oligomers (OligoTyrS II) that showed on structural analysis highly varied structural features arising likely from the addition of oxygen, derived from water or hydrogen peroxide, to the intermediate quinone methides and substantial involvement of the phenolic OH group in the oligomerization. In line with these characteristics, OligoTyrS I proved to be more active than OligoTyrS II as antioxidant in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays and as anticoagulant in the classical clotting times, mainly in prolonging the activated partial thromboplastin time (APTT). After intraperitoneal administration in mice, OligoTyrS I was also able to significantly decrease the weight of an induced thrombus. Data from chromogenic coagulation assays showed that the anticoagulant effect of OligoTyrS I was not dependent on antithrombin or factor Xa and thrombin direct inhibition. These results clearly highlight how some structural facets of even closely related phenol polymers may be critical in dictating the anticoagulant activity, providing the key for the rationale design of active synthetic nonsaccharidic anticoagulant agents alternative to heparin.


Assuntos
Anticoagulantes , Sulfatos , Animais , Heparina , Peróxido de Hidrogênio , Camundongos , Tempo de Tromboplastina Parcial , Álcool Feniletílico/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...